®

£— AN1720
Y/ Application Note

Managing the Read-out Protection in Flash Microcontrollers

By DTV - Monitor MCU Applications Lab

Introduction

Once a MCU has been programmed with its final software, it may be protected against piracy by
forbidding any further read-out of its contents.

Each Flash MCU (either HDFlash or XFlash type) has this capability, by means of a freely
programmable option byte, but each kind of programming tool requires a different method to enable
it.

The examples and procedures below are fitted for the ST7FLCD1 MCU, with an HDFlash memory
array. These guidelines are applicable to any other MCU (even XFlash) but all MCU-related
features, like option bytes, default values, enabled/disabled states, compiler options etc.. must be
carefully reviewed and fitted for the new target MCU.

1 Read-out Protection Principle

The protection against further read-out consists of a dedicated configuration bit, named FMP_R, to
program to the desired value. This configuration bit is located in the Option Byte 1, as described in
the Flash Program Memory chapter of the ST7FLCD1 datasheet:

STATIC OPTION BYTE 1

7 6 5 4 3 2 1 0
FMP_R
Default 1 1 1 1 1 1 1 1

OPTO= FMP_R Flash memory read-out protection
The bit0, FMP_R, indicates if the user flash memory is protected against read-out piracy:

0 Read-out protection enabled
1 Read-out protection disabled

By default, this bit is set to 1 (protection disabled). Once programmed to 0, the read-out protection
is enabled after the next reset of the MCU.

The program and data stored in the Flash program memory are then protected against read-out
piracy (including a re-write protection) : the contents of the MCU can no longer be read or verified.
In addition, no programming tool can bypass this protection, any attempt to do so will result in an
error message.

If this protection is to be removed by reprogramming the Option Byte, the entire program memory is
automatically wiped out, making it impossible to read the contents of the MCU by any means.

24 June 2003 Revision 1.0 1/12

Programming the Option Byte AN1720

2

Programming Tool -

Application Board

2.1

2.1.1

2111

2/12

Programming the Option Byte

The Option Byte 1, where the read-out protection bit is located, is a regular Flash memory byte but
does not pertain to the regular Flash program memory array of the MCU. As such, it is accessible in
read and write mode by means of a separate procedure, which depends on the software and hardw
are tool used for programming the MCU and is completely independent of the other program
memory array.

The following operations describe how to program and clear this option byte on the following
different hardware tools:

o ST7 STICK tool (maker: ST) under ST7 Visual Programmer (STVP7) software tool
o STMC-ICC tool plugged into the ST7FLCD-EMU3 emulator (maker: ST)
« FLASHER ST7 (maker: Segger, Germany)

The first two work under the ST7 Visual Programmer (STVP7) software tool.
The last one works under a proprietary software tool.

Each tool connects itself to the ST7FLCD1 MCU by means of a standard ICC cable (flat ribbon
cable with HE-10 connectors on both ends).

There is no Eprom Programming Board (EPB) proper for the MCU, the only way to program it is to
connect the ICC cable from the programming tool to its matching ICC connector on the application
board where the MCU is mounted:

ICC Connector

flat ribbon cable

ICC Connector

MCU

Programming the option byte “manually”

The way to program and erase the option byte directly, as described below, is the simplest and
easiest way but is not quite suited for automatic programming, because the option byte
configuration must be reloaded each time the programming software is re-run.

Under STVP7 with ST7 STICK

Configuring STVP7

Prior to programming an ST7FLCD1 MCU, the STVP7 software must be configured accordingly.
STVP7 software version 1.7.0 or above is required to program this MCU. Updates can be freely
downloaded from the ST web site http://www.stmcu.com, section “downloads”.

(572

AN1720 Programming the Option Byte

Note:

The “Configure/Configure ST7 Visual Programmer” menu entry launches a configuration window,
which must be set as follows to work with the STICK:

Configuration

Hardware : Part Device :

ST7HDT7—EFPE?Z] ST7EHIE
ST7MDTH1-EFE
ST7MDTS1-EFE
ST7MDTS1-EFEITAG Programming mode:

ST7HDTUZ2-EFE

ST/MDTU2-EFEITAG i
ST7HDTUZ-EFE ICP COPT Di=able
ST/MDTUZ-EFEITAG ICF OFT Enable

ST7MDTUS-EFE
ST7HDTUL-EFBITAG
ST7UDOS-TD] 3

STYFMC1KZ
ST/FMCZ2M9
STYFMC2He
ST/FMCZ2RE
ST?FMCZRY
STYFMC254

]|
k. I
_ Carcel |

Cance

STMC-ICC

The STICK can only be connected to the computer by means of the parallel port (LPT1).

2.1.1.2 Enabling the Read-Out Protection

By default, the STVP7 window opens on the “program memory” area. Clicking on the “option byte”
tab on the bottom of the main window launches the following screen:

| @& G | | ¥ [sT7rrent LY YRR Y
=l
PROJECT - ﬂ Walue : [FF
j t
e peIee Mame IDenmme |
CONFIGORATIO] FrF_R Bead-Uut Protection Oisabled Hhd
Hardware: STIC
Programming mo
Device name: ST
1] : ROGRAM MEMOR), OPTION BYTE /

]

This is the specific window where the read-out protection bit FMP_R can be read, programmed and
verified like any other Flash memory location, thanks to the 3 icons on the top bar:

» oo

Read Program Verify

By default on a fresh MCU, the read-out protection bit comes up as disabled, which means that bit
0 of option byte 1 is set to 1. To enable it, the “Read-Out Protection Enabled” entry must be
selected by clicking on the right arrow; alternately, the new option byte value can be directly entered
in the “Value” field (only bit 0 is meaningful).

Then the option byte can be programmed and verified by means of the 2nd icon “Program” above.
The “value” field (the actual value of the Option Byte 1) has also changed to OXFE, since bit 0 is now

cleared:
Value.

Mame I D escription J—
FMP_R Head-Out ProtectiolEnabIed =

['PROGRAM MEMORY) OPTION BYTE /

3/12

Programming the Option Byte

AN1720

From now on, any attempt to read, program, verify or erase the sector(s) of the main Flash program

memory array from the “Program Memory” tab will give an error message:

Claeben abd obb

| =l

PROJECT : -
no project

CONFIGURATIO]
Hardware: STIC
Programming mo

Device name: 5T
Pt - TETI
11 3

_JH = @ @B B | eh[sT7FLCDL

goi1oon FF FF FF FF FF FF FF FF FF

oo10zo IHASTYP

goio01ia0 FF FF FE RFE RFE RFE FE RBE F‘E

oo1030 FE
oo1o4n0 FE
oo1050 FE
N01060 FE

<

PROGRAM MEMORY AQF

F
& The device is protected |
F

FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF

FF =
FF
FF
FF
FF
FF

FF =
_*I_I

Select active zec

2.1.1.3 Disabling the Read-Out Protection

Once enabled, the read-out protection can only be removed by clearing the entire contents of the
Flash memory array: this means that the program memory will be filled with 00s, making it useless
to read back. The STVP7 tool is not responsible for this, this is done at the chip level by embedded

algorithms which cannot be bypassed (hardware protection).

The protection removal is available again from the “Option Byte” tab, by selecting the “Read-Out
Protection Disabled” entry value, and then programming the option byte again by the same
“Program” icon. This operation takes slightly more time because the MCU is not programming one
bit alone but its entire Flash memory array.

Once completed, the Flash memory array can be read again but the main window shows that it is
completely filled up with 00s: the previously stored software has been wiped out.

aoi1ooo

oo1o1n

goinzo

an103n
oo1o4n0
goi1aso

N010&0

1]

oo
oo
on
oo
oo
on
0o

oo
oo
on
oo
oo
on
0o

oo
oo
on
oo
oo
on
0o

00 -
oo
on
oo
oo
on
0o

Select active zectars

[w]Sectar 2
[w]Sector 1
[w]Sector

»i

| PROGRAM MEMORY ADPTION BYTES

To reprogram the MCU, it is therefore needed to erase the sector(s) first, as usual.

4/12

4

AN1720 Programming the Option Byte

2.1.2 Under STVP7 with STMC-ICC Tool

It works exactly in the same way as the ST7 STICK described above, the configuration must simply
be changed to match the new hardware:

Configuration

Hardwiare : Puart Device :

ST7HDT7—EPEZ =] BT
USE

ST7MDTH1-EFE
ST7MDTS1-EFE ST7FMCIKZ
ST?MDTS1-EPBITAG Programming mode: ST7FMC2MY
ST7MDTI2-EFE ST7FMC2NE

ST?HDTU2-EFEITAG i ST?FHCZ2FEER
ST7MDTUZ-EFE ICEPF OPT Disable
ST/MDTUI-EFBEITAG ICE OPT Enable

STYFMC2R?
STYFMC254
ST7HDTUL-EFE
ST7MDTUS-EFBITAG
ST7UDOS-TD13
STICE

Cancel

]
QK. I
_Cacel |

Since the programming is now done through the ST Microconnect box of the EMU3 emulator, it can
be connected to the computer by means of the parallel port (LPT1) but also the USB port.

The rest of the operating mode remains strictly the same. If the USB port has been chosen, the time
it takes to program/erase/verify a chip will be significantly shorter.

2.1.3 With Segger FLASHER ST7 Tool
This tool has a different user interface, which needs some time to get used to.

The software itself is completely different, and the hardware tool (the Flasher blue box) is connected
to the PC by means of a serial port (COML1 or else).

2.1.3.1 Configuring the FLASHER Tool

Prior to programming an ST7FLCD1 MCU, the FLASHER software must be configured accordingly.
Segger software version 1.76c¢ or above is required to program this MCU. Updates can be freely
downloaded from the Segger web site http://www.segger.com, section “download”.

The “Options/Device..” menu entry launches a configuration window, which must be set as follows
to work with the FLASHER:

Device properties]

Device
Start Adr |Bark 0: Dx1000 =] Endad |Bark 3 0x10001 =]
Interface ISeriaI [l Target) j Speed IFast j

] I Cancel |

Note: The FLASHER blue box must be connected to the PC to configure the software properly, otherwise
the “Options/Device..” menu entry is grayed out and cannot be selected.

(572 5/12

Programming the Option Byte

AN1720

The Device field is where the MCU type is chosen. The two options “OPT enabled” and “OPT

disabled” are of no concern to the ST7FLCD1, and both configurations work.

By means of the Start Adr and End Adr fields, the user can freely choose which sector(s) will be
erased, programmed or verified by the FLASHER:

« The Start Adr field defines the beginning of the memory array area to program

« In a similar way, the End Adr field defines the end of the memory array area to program

The FLASHER uses the word “bank” instead of sector, and the bank numbers are slightly different
from their corresponding sector numbers:

Bank Sector Start Address End Address
Number Number

0 2 0x1000 OXDFFF

1 1 0OxE000 OXEFFF

2 0 0xF000 OxFFFF

Option Byte 1 Option Byte 2

3 N/A p Y p yt

(0x10000) (0x10001)

The first 3 banks (banks 0, 1 and 2) have a matching sector in the usual 60KB memory space of the
Flash memory array, between 0x1000 and OxFFFF.

The last bank (bank 3) has no matching sector: it allows access to the two programmable Option
Bytes 1 and 2, and is defined outside the normal 64KB (16-bit) memory space at virtual addresses
0x10000 and 0x10001.

Once everything has been configured properly, and a running ST7FLCD1 MCU has been
connected to the FLASHER by means of the ICC cable, the main window displays the following
status under the “Target” right hand side:

{# Untitled - Flasher ¥1.76c H=]
File Edit “ew Target Opkions Help
File Target
No data loaded Device ST7FLCD1 OPT enabled
Range 1000 -10001
Interface Serial [In Target]
Flasher CRC 8CBF
Flasher status Heady
Flasher ¥in 15.4 Yolt
Flasher firmware 1.76c for Flasher ST SfW 70022
Result 0.k,
Current adr —
Target VCC 5.0 Volt
Area Adr. Len. Gap Data [hex] ASCII
|Ready [T 115200 Baud |COM3, Datarate[bytes/sec] 1138(Rx), 1594(Tx) ¢
Note: The FLASHER blue box must be connected to a properly powered ST7FLCD1 MCU with its own

6/12

clock (crystal, oscillator or else), otherwise the window will display: “Target VCC 0.0 Volt” in red.

(572

AN1720 Programming the Option Byte

2.1.3.2 Enabling the Read-Out Protection

The contents of the ST7FLCD1 MCU must be first downloaded to the PC, in order to work on them.
Clicking on the “Target/Read memory” menu entry will upload the chip contents to the PC.

The bytes will then be displayed into the 2nd lower window, either in “list” mode (the bytes are
grouped by packets of consecutive addresses) or in “dump” mode (similar to STVP7) as shown
below:

{# Untitled - Flasher ¥1.76c M=l
File Edit | yiew Target Options Help
File List Mode Target
v Dump mode Device ST7FLCD1 OPT enahbled
Range 1000 - 10001 Range 1000 - 10001
Bytes FO02 Interface Serial [In Target]
CRC FOBS& Flasher CRC FOB&
Flasher status Ready
Flasher ¥in 15.6 Yolt
Flasher firmware 1.76c for Flasher ST7 SfW 70022
Result 0.K.
Current adr —
Target ¥CC 5.0 YVolt
O0OFFAD OD 00 OO OO0 OO OD OO OO OO OO OO OD OO OO OO OO -]
OOFFBOD OO0 00 OO OO OO OO0 OO OO OO OO OO OD OO OO OO OO0
OOFFCO 00D 00 OO OO OO OO0 OO OO OO OO OO OD OO OO OO OO0
O0FFDO OO 00 OO OO OO OO0 OO OO OO OO OO OO OO OO OO OO0
OOFFEOD OO 00 OO OO OO OO0 OO OO OO OO OO OD OO OO OO OO0
O0OFFFOD 00 00 OO OO0 OO OO0 OO OO OO OO OO OD OO OO OO OO0
oploooo0 FF FFRFF FF FF FF FF FF FF FF FF FF FF FF FF FF

[aUTC: 115200 Baud

|COM3, Datarate[bytesisec] 1092(Rx), 1594(Tx) 2

Scrolling down till the very end of the memory will show the two Option Bytes at addresses 0x10000

and 0x10001. The subsequent bytes in red are meaningless.

To enable the read-out protection, the value at 0x10000 must be changed to OXFE (bit 0 = 0).

Different contents can be programmed into the MCU, but must be merged first to the existing
contents (which have just been downloaded) by means of the “File/Merge” menu. Do not load a S19
file, but merge it! Otherwise, the previously loaded contents will be overwritten and the two Option

Bytes will likely disappear.

Finally, the chip can be erased (“Target/Clear” menu entry, or F6 function key) and reprogrammed
(“Target/Program & Verify”, or F7 function key).

4

7/12

Programming the Option Byte AN1720

{# C:'\HexST 7' scaler_rouge.s19 - Flasher ¥1.76c
File Edit ‘Wew Target Opkions Help

If the user tries to read the chip contents afterwards, the following error message shows up:

File Target
Device STYFLCD1 OPT enabled
Hange 1000 - 10001 Hange 1000 - 10001
Bytes Fooz2 Interface Serial [In Target]
CRC 9480 Flasher CRC 9480
Flasher status Ready
Flasher ¥in 15.4 Volt
Flasher firmware 1.76c for Flasher S5T7 SN 70022
| Result Error 85: Target is read protected
Current adr 01000
& Target is read protected Target ¥CC bh.0 Volt
00FFAD FF | FF FF FF FF FF FF FF FF ;l
00FFBO FF | FF FF FF FF FF FF FF FF
00FFCO FF FF FF FF FF FF FF FF FF

DOFFDO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00FFED FF FF 94 AC 9A E3 FF FF 94 E3 94 E3 94 E3 94 E3
00FFFO FF FF 9A E3 BB 5F 9A E3 9A E3 FF FF 9A E3 B3 1E

010000 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF j
|Time for last action (secims) 0:130 |F'.LITO: 115200 Baud |CC|[‘-“I3J Datarate[bytesisec] 1082(Rx), 1594(T=) 2
2.1.3.3 Disabling the Read-Out Protection

2.2

221

2211

8/12

This is achieved by simply clicking on the “Target/Clear Readout protection” menu entry.

Then the FLASHER will work on its own: the entire ST7FLCD1 MCU contents will be wiped out
(filled with 00s) and, unlike STVP7, erased immediately afterwards. This leaves the MCU in an
erased state, ready for a new programming cycle. On STVP7, clearing the read-out protection bit
would leave the MCU programmed with 00s, this would require a “manual” erasure later on (refer to
Section 2.1.1.3).

Enabling the Read-out Protection automatically

The procedure previously described has a major drawback: it must be repeated for every new chip
to program. There is an easy way to make it fully automatic, each time a new S19 file is rebuilt
(assembly toolchain, C language etc).

The example provided for C language application is fitted for Metrowerks/Hiware C toolchain.

Under STVP7, with the STICK or the STMC-ICC

Creating the Morotola file

First, the read-out protection bit must be enabled as described in Section 2.1.1.2, and then saved
with the “File/Save As..” menu entry. This creates an S19 file that only contains the specific Option
Bytes configuration for STVP7:

S1048020FES5SD
S9030000FC

This file must be set aside for later use, let's call it “readout.s19".

4

AN1720 Programming the Option Byte

2.2.1.2 Embedding the option bytes into the project

In a 2"d step, a project must be created, as described in the other application note AN1658
Automatic Serial Number Generation in MCU (or refer to the on-line help), and then the “Option
Byte” tag must be set to load the previously created “readout.s19” file:

Project Edition |

Configuration | Propetties | Serial Numbering | PROGRAM MEMORY OFTION BYTE |

File | Creation [ate | Lazt Maodificati... | Last Access Add
C:hbemphreadout. 19 MaonJun 0215, MonJun 0215, MonJun 027

Remove

Femove Al

I

| aF. I Cancel

Once the project has been fully configured, the programming can be started by clicking:
« either on “All tabs” in the “Program” menu
« oron the icon shown below:

projeckt [test.stp] - STYP

JJ File Edit Project Configure Read Program Werify Erase Blank-Check Wiew Help

(@@ @ |® & | & sT7ric R P RN |

Then the list of actions enabled in the “Properties” Window will be executed by STVP7, including the
programming of the Option Bytes.

2.2.2 With the FLASHER

The software does not manage projects the way STVP7 does, therefore the option bytes
configuration must be embedded inside the Motorola file to program into the MCU.

2.2.2.1 Creating the Morotola file

First, in a similar way as described above for STVP7, a Morotola file must be created with the
desired option bytes configuration only. Bringing the “Options/Device..” configuration window (refer

4

9/12

Programming the Option Byte AN1720

to Section 2.1.3.1), the Start Adr and End Adr fields must be set to enclose the bank 3 alone,
where the option bytes are located:

Device properties |

Device |ST7FLCOT OPT enabled =]

Start Bank . (1 0000 End Adr |Bank 3 0010001 7]

Interface I Serial [In Target] j Speed I Fazt j

]9 I Cancel |

Clicking on the “Target/Read memory” menu entry will upload the chip contents to the PC, but only
the two Option Bytes:

{# C\HexSTT\scaler_rouge.s19 - Flasher ¥1.76c

File Edit Wiew Target oOptions Help

File Target
Device STYFLCD1 OPT enabled
Range 10000 - 10001 Range 10000 -10001
Bytes 2 Interface Serial [In Target]
CRC FOBS Flasher CRC FOB3
Flasher status Heady
Flasher ¥in 15.6 Yolt
Flasher firmware 1.76c for Flasher ST7 SfH 70022
Result 0.K.
Current adr —
Target ¥YCC 5.0 Volt
piooooD FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

Ready |BUTC: 115200 Baud |COM3, Datarate[bytes/sec] 1140(R=), 1080(Tx) 4

The 15! byte OxFF at address 0x10000 must be changed to OXFE, and then the file must be saved
with the “File/Save As” menu entry.

This creates a very short S29 file (= S19 file with addresses beyond OxFFFF), which contains the
following bytes alone for the Flasher:

S206010000FEFFFB
S9030000FC

The read-out protection can now be enabled “manually”, by copy-pasting the contents of the
previously created S29 file at the very bottom of the S19 file created by the development toolchain.
But each time the software is rebuilt, a new S19 file will be created and those lines will be removed.

The best solution is to force the C toolchain to add those few bytes into the S19 file, transparently
and automatically each time the software is rebuilt.

2.2.2.2 Embedding the option bytes inside the final S19 file automatically

Thanks to the Metrowerks support team, two different ways are possible, both work well:

10/12

4

AN1720

Programming the Option Byte

Note:

4

METHOD 1: Use the linker command VECTOR ADDRESS

Open the PRM file

At the end of the PRM file, add the following line:

VECTOR ADDRESS 0x10000 OXFEFF

This adds a fake vector at address 0x10000 made of a 16-bit data field: OXFE and OxFF, which
are the two 8-bit values to write the option bytes with

Save the updated PRM file
Open the MAKEFILE
After the $(LINK) line of the .abs section, add the following lines:

test.abs : $(ENV) $(OBJ7LIST) test.prm
$ (LINK) test.prm
burner.exe OPENFILE "C:\test.s19" \
format=motorola \
busWidth=1 \
origin=0 \
1len=0x10002 \
destination=0 \
SRECORD=Sx \
SENDBYTE 1 "c:\toto\obj\test.abs"

The directories must be changed according to your project.
Or, if this section already exists, change “len=0x10000" to “len=0x10002".

The above changes can also be done in the burner’s “.bbl” file, if used.

Save the updated MAKEFILE

Now each time the application is rebuilt, the generated “test.S19” file contains the following record:
S107FFFExxxXFEFFE4 (xxxx being the reset vector).

METHOD 2: Use the compiler to define a variable at an absolute address

Open one of the source files in the application, add the following line:

const int ID @0x10000 = OXFEFF;

This line defines a 2 byte variables called “ID”, allocates it at address 0x10000 and initializes it
with the value OXFEFF

Save the updated source file

Open the PRM file and add the following line in the middle of the file, for example between
“NAMES..END” and “SECTION?" entries:

ENTRIES ID END

This will make sure variable ID is linked to the application.

Save the updated PRM file

Go to METHOD 1 above and follow the procedure starting at the 4™ line: “Open the
MAKEFILE” and follow the procedure till the end

Now each time the application is rebuilt, the generated “test.S19” file contains the following record:
S107FFFExXxxXFEFFE4 (xxxx being the reset vector).

Once the S19 file is loaded by the FLASHER software, the final 2 bytes at addresses 0x10000 and
0x10001 will be automatically identified as option bytes and programmed accordingly.

11/12

Programming the Option Byte AN1720

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its
use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously
supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without
express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
© 2003 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

www.st.com

4

12/12

	Introduction
	1 Read-out Protection Principle
	STATIC OPTION BYTE 1

	2 Programming the Option Byte
	2.1 Programming the option byte “manually”
	2.1.1 Under STVP7 with ST7 STICK
	2.1.1.1 Configuring STVP7
	2.1.1.2 Enabling the Read-Out Protection
	2.1.1.3 Disabling the Read-Out Protection

	2.1.2 Under STVP7 with STMC-ICC Tool
	2.1.3 With Segger FLASHER ST7 Tool
	2.1.3.1 Configuring the FLASHER Tool
	2.1.3.2 Enabling the Read-Out Protection
	2.1.3.3 Disabling the Read-Out Protection

	2.2 Enabling the Read-out Protection automatically
	2.2.1 Under STVP7, with the STICK or the STMC-ICC
	2.2.1.1 Creating the Morotola file
	2.2.1.2 Embedding the option bytes into the project

	2.2.2 With the FLASHER
	2.2.2.1 Creating the Morotola file
	2.2.2.2 Embedding the option bytes inside the final S19 file automatically

